# Pipeline Research Council International

Hard Spot ILI Risk Prioritization – Past and Present



LEADING PIPELINE RESEARCH

Sean Moran and Kelly Thompson
Williams

Fall TC Meeting - Dallas, TX Oct 15,2024

# **Hard Spot ILI Prioritization**

- Evolution of Williams Hard Spot Program
- Using Williams hard spot ILI findings for risk evaluation
- Quantitative Hard Spot Risk Modeling (with MAT 7-2)



# **Development of Williams Hard Spot Program**

- As a result of the Enbridge hard spot failure in August 2019, Williams undertook a study in early 2020
  - Williams found sporadic failure history from 1960-1980s that did not align well with industry data.
    - Manufacturers: Consolidated Western, Bethlehem, and National Tube Not A.O. Smith
  - 2016 hard spot leak -> hard spot ILI run -> no hard spots found
- Williams begins Hard Spot ILI in 2020/2021 on targeted segments with failure history (7 segments)
  - This effort was prior to hard spot risk model
  - By end of 2022, 46 digs completed and 1 hard spot found
- Williams has 1 Station hard spot rupture in 2022 and 1 mainline hard spot leak in 2023
  - Williams begins on a new path of understanding hard spot susceptibility and Hard Spot ILI capabilities and limitations



Enbridge near Danville, Kentucky on August 1, 2019 30" x 0.375", X52 A.O. Smith, Flash Welded 1942 Installation (amended CAO)



# 2022 Station Rupture (piggable pipe)

# Incident:

- Hard Spot 450+ BHN 6.5"L X 3" W
- Recent increase in CP current
- Operating stress 46% SMYS
- Crack initiated in 2mm corrosion pit
- 1957 Bethlehem, 30", X52, from a specific PO

## Response:

- Expedited hard spot ILI (more Bethlehem pipe)
- Review/mitigate CP levels
- Develop Station Piping Risk Model
  - Assess Station Piping by Risk Prioritization

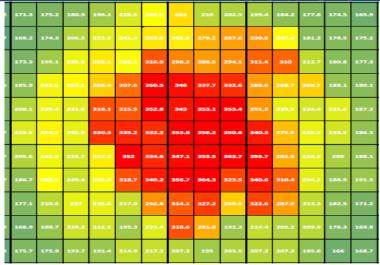
|   |   | F1  | Ð   | G1  | 62  | H1  | H2  | 11  | 12  | 11  | 12  | K1  | 1/2 | u   | U   | M1  | M2  | N1  | N2  | 01  | 02  | P1  | P2  | Q1  | Q2  | R1  | R2  |
|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|   | 8 | 180 | 190 | 172 | 176 | 176 | 185 | 185 | 200 | 165 | 195 | 200 | 195 | 180 | 190 | 185 | 205 | 195 | 190 | 185 | 185 | 190 | 176 | 190 | 185 | 190 | 185 |
|   | 7 | 185 | 195 | 200 | 180 | 180 | 195 | 195 | 200 | 190 | 200 | 190 | 210 | 205 | 190 | 195 | 205 | 195 | 190 | 190 | 176 | 195 | 190 | 190 | 180 | 195 | 176 |
| - | 6 | 180 | 185 | 195 | 185 | 195 | 200 | 205 | 222 | 195 | 200 | 195 | 228 | 234 | 205 | 210 | 210 | 222 | 222 | 210 | 210 | 200 | 195 | 195 | 190 | 190 | 180 |
| 8 | 5 | 185 | 190 | 190 | 180 | 190 | 195 | 222 | 228 | 240 | 253 | 253 | 279 | 286 | 271 | 258 | 258 | 279 | 279 | 247 | 253 | 247 | 228 | 205 | 200 | 195 | 172 |
| ä |   | 185 | 180 | 190 | 200 | 200 | 240 | 253 | 258 | 301 | 294 |     | 319 | 271 | 286 | 311 | 286 | 279 | 301 | 311 | 247 | 234 | 228 | 247 | 216 | 195 | 185 |
| Ē | 3 | 176 | 190 | 195 | 210 | 222 | 264 | 301 |     |     |     | 301 |     |     | 327 | 344 | 327 | 344 |     | 319 | 319 | 253 | 240 | 258 | 240 | 200 | 195 |
|   | 2 | 190 | 185 | 216 | 210 | 286 | 327 | 353 | 362 | 362 | 371 | 371 |     |     | 294 | 311 | 286 | 336 | 344 | 319 | 311 | 311 | 205 | 271 | 271 | 200 | 200 |
|   |   | 180 | 176 | 205 | 216 | 301 | 301 | 279 | 222 | 205 | 240 | 336 | 353 | 336 | 336 | 301 | 240 | 311 | 311 | 294 | 294 | 253 | 222 | 228 | 210 | 185 | 200 |
|   | 0 | 176 | 185 | 205 | 216 | 311 | 432 | 353 | 432 | 421 | 451 | 353 | 371 | 264 | 294 | 311 | 271 | 271 | 253 | 271 | 253 | 228 | 216 | 200 | 180 |     |     |
| N | 2 | 195 | 195 | 216 | 222 | 294 | 371 | 400 | 432 | 400 |     |     |     | 319 | 294 | 301 | 301 | 234 | 258 | 222 | 200 | 210 | 185 | 190 | 190 |     |     |
| W | 3 | 190 | 180 | 185 | 200 | 200 | 205 | 222 | 264 | 253 | 247 | 240 | 222 | 228 | 247 | 222 | 228 | 210 | 205 | 195 | 195 | 190 | 190 | 195 | 185 |     |     |
| ř | Ø | 180 | 180 | 169 | 185 | 190 | 195 | 190 | 210 | 210 | 210 | 205 | 210 | 205 | 200 | 200 | 210 | 195 | 195 | 185 | 185 | 176 | 176 | 180 | 180 |     |     |
|   | 5 | 180 | 180 | 176 | 195 | 195 | 180 | 185 | 185 | 205 | 185 | 200 | 190 | 190 | 185 | 185 | 190 | 185 | 190 | 185 | 185 | 180 | 190 | 180 | 185 |     |     |
|   | 6 | 172 | 180 | 180 | 172 | 190 | 180 | 176 | 190 | 200 | 180 | 205 | 210 | 185 | 185 | 190 | 180 | 190 | 185 | 185 | 180 | 176 | 176 | 185 | 190 |     |     |





# 2023 Hard Spot Leak

## **Leak reported by Landowner in March 2023**


- NDE evaluation discovered leaking hard spot with crack
- Same Bethlehem purchase order as Station hard spot failure

## Hard Spot ILI had been Completed: October 2021

- Six (6) hard spot features reported by ILI Vendor in February 2022
  - Highest hardness reported by ILI was 285 BHN and 0 hard spots found in-ditch

## **Hard Spot ILI re-analysis effort**

- We now understand hard spot signals can vary and identification can be a challenge for ILI vendors
- After hard spot leak incident, Williams worked with ILI vendor to re-analyze prior segments
  - Hard Spot ILI re-analyses and/or reassessments may be something for Operators to consider



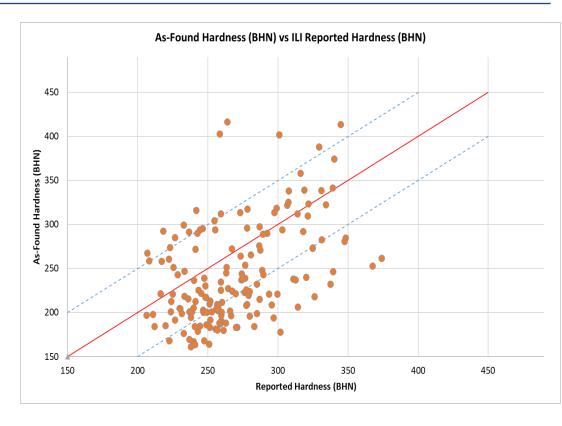


1957 Bethlehem 30", 0.3125" NWT, X52



# Williams Hard Spot ILI Program

## 51 Hard Spot ILIs (~2800 miles) completed to date (2020 to Present)


- Risk based prioritization (MAT 7-2 and Williams hard spot findings)
- Thousands of hardness anomalies reported (not all are injurious hard spots)
  - Operators need criteria for screening hard spots

## 228 digs (1067 hardness anomalies) (2021 to Present)

- 93 hard spots requiring repair (Hardness ≥ 280 BHN)
  - ~40% of digs, ~8% of calls dug
  - 44 hard spot defects (Hardness ≥ 327 BHN)
    - ~19% of digs, ~4% of calls dug

## All hard spot digs are integrated into a HS database which Risk model consumes

- Allows Williams to use data from hard spot findings each year
  - Spatially located with all necessary pipe attributes and details of hard spot finding (hard spot defect or not)





# **Hard Spot ILI Risk Prioritization**

| Practically impossible | Very unlikely<br>to occur | occur                 | occurring<br>sometime | Possibility of isolated incidents | repeated incidents | (Annualized<br>Probabilities) |                                                                                                                                                                                                                                     | Severity Consideration                                                                                                                              | ons                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|---------------------------|-----------------------|-----------------------|-----------------------------------|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1x10 <sup>-6</sup>     | 1x10 <sup>-5</sup>        | 1x10 <sup>-4</sup>    | 1x10 <sup>-3</sup>    | 1x10 <sup>-2</sup>                | 1x10 <sup>-1</sup> |                               |                                                                                                                                                                                                                                     | Employee/Contractor Health &                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                          |
| 6P                     | 5P                        | 4P                    | 3P                    | 2P                                | 1P                 |                               | Public Health & Safety                                                                                                                                                                                                              | Safety                                                                                                                                              | Environmental                                                                                                                                                                                                                                                                                                                                                            |
| 4                      | 3                         | 2                     | 2                     | 1                                 | 1                  | 1S<br>\$100M                  | Fatality; two or more injuries requiring in-patient hospitalization; officially declared community evacuation ≥ 48 brs.                                                                                                             | Multiple fatalities                                                                                                                                 | Widespread release, major emergency response, long-term cleanup, potential significant adverse effects to environmentally sensitive area (ESA), potential remedial concerns ≥ 5 yrs, negative health effects for members of the public due to chemical exposure; large-scale injury or death of aquatic or land-based wildlife; release resulting in acute cost ≥ \$100M |
| <b>4</b> <sup>5</sup>  | 4                         | 3                     | 2                     | 2                                 | 1                  | 2S<br>\$10M                   | Injury requiring in-patient hospitalization; officially declared community evacuation ≥ 24 hrs and < 48 hrs.                                                                                                                        | Fatality                                                                                                                                            | Widespread release, major emergency response, long-term cleanup, potential significant adverse effects to environmentally sensitive area (ESA), potential remedial concerns $\geq 2$ and $< 5$ yrs, no negative public health effects; medium-scale injury or death of aquatic or land-based wildlife; release resulting in acute cost $\geq$ \$10M and $<$ \$100M       |
| <b>4</b> <sup>6</sup>  | <b>4</b> <sup>5</sup>     | 4                     | 3                     | 2                                 | 2                  | 3 <b>S</b>                    | Injuries requiring treatment beyond first aid (treatment by a medical professional); officially declared community evacuation $\geq 3$ prs and $< 24$ prs, officially declared shelter in place or public road closure $\geq 3$ prs | Severe injury/illness resulting in life threatening or life altering impact to daily activity and extended recovery duration from months to forever | Localized release, intermediate emergency response, cleanup lasting weeks to months, potential adverse effects to environmentally sensitive area (ESA), potential remedial concerns ≥ 6 months and < 2 yrs; small-scale injury or death of aquatic or land-based wildlife; release resulting in acute cost ≥ \$1M and < \$10M                                            |
| <b>4</b> <sup>7</sup>  | <b>4</b> <sup>6</sup>     | <b>4</b> <sup>5</sup> | 4                     | 3                                 | 2                  | 4S<br>\$100k                  | Injury requiring first aid; officially declared community evacuation < 3 hts; officially declared shelter in place or public road closure < 3 hts.                                                                                  | Serious injury/illness resulting in significant impact to daily activity and recovery duration from weeks to months                                 | Localized release, local emergency response, cleanup < 2 weeks, potential minor adverse effects to environmentally sensitive area (ESA), potential remedial concerns < 6 months; release resulting in acute cost ≥ \$100k and < \$1M                                                                                                                                     |
| <b>4</b> <sup>8</sup>  | <b>4</b> <sup>7</sup>     | <b>4</b> <sup>6</sup> | <b>4</b> <sup>5</sup> | 4                                 | 3                  | 5 <b>S</b><br>\$10k           | Numerous public complaints                                                                                                                                                                                                          | Minor to moderate injury/illness resulting in minor impact to daily activity and recovery duration from hours to days                               | Release confined to site or close proximity, prompt cleanup, inconsequential or no adverse effects on environmentally sensitive area (ESA); release resulting in acute cost ≥ \$2.5k and < \$100k                                                                                                                                                                        |
| <b>4</b> <sup>9</sup>  | <b>4</b> <sup>8</sup>     | <b>4</b> <sup>7</sup> | <b>4</b> <sup>6</sup> | <b>4</b> <sup>5</sup>             | 4                  | 6S                            | Isolated public complaints                                                                                                                                                                                                          | Minor event with little to no physical damage and no significant impact to daily activity                                                           | Any unplanned or unpermitted release that is not reportable to a regulatory or tribal agency; release resulting in acute cost < \$2.5k                                                                                                                                                                                                                                   |

Approvals and Notifications\*

|            |                                | uce Risk<br>until resolution/mitigation) | Accept Risk (Continue operation at residual risk level) |  |  |
|------------|--------------------------------|------------------------------------------|---------------------------------------------------------|--|--|
| Risk Level | Approval                       | Notification                             | Approval                                                |  |  |
| 1          | Senior Vice President          | Chief Operating Officer                  | N/A -Outside Risk Capacity                              |  |  |
| 2          | Vice President/General Manager | Senior Vice President                    | Senior Vice President                                   |  |  |
| 3          | Director                       | Vice President/General Manager           | Vice President/General Manager                          |  |  |
| 4          | None Required                  | None Required                            | None Required                                           |  |  |

Risk Capacity

Risk Appetite

Risk DOA rolls upward when a role/title does not exist in an organization.



# Critical Review of Prior Model MD Module: E-M-R Approach

## **Exposure**

- Likelihood of manufacturing defect
- Based on observed defects and
- failure history
- HS observations and failures rolled into this general category

## **Mitigation**

- Pressure testing
- Seam and crack tools

### Resistance

- Based on MAOP percent of SMYS
- Stronger pipe, lower stress %
   → higher resistance



# **Critical Model Review Issues with the old approach**

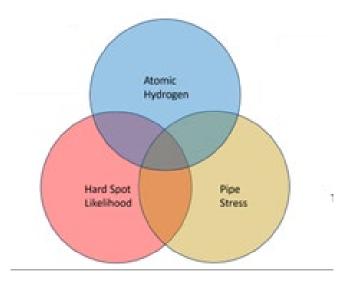
## **Exposure Mismatch**

 Other manufacturing defects susceptible to stress induced failure without additional environmental conditions

## **Mitigation Mismatch**

- Pressure testing
  - Hard Spot defect absent further embrittlement or stress concentrators may survive qualifying test
- Seam and crack tools
  - Unlikely to detect hard spot with cracks
  - Crack failure occurs
     abruptly in embrittled hard
     spot with small stress
     concentrator (2mm
     corrosion pit)

## **Resistance mismatch**

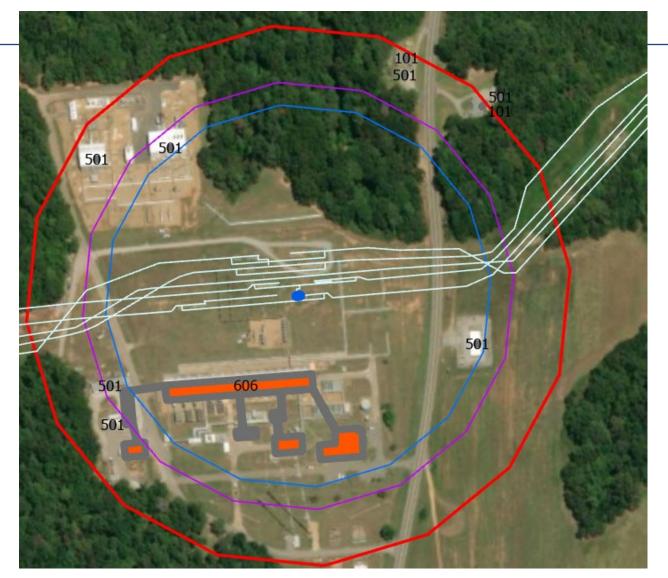

- No embrittlement component interaction
- Vintage higher strength steel manufacturing processes contribute to exposure

# **Most Effective Fix – New Hard Spot Module**

# Table IV-1 Interacting Threat Matrix

|      |       | Time | -Deper | ndent |         | Stable |     |     |                |                |                |    | Tin  | ne-Inde               | epend | ent |    |    |     |       |                |
|------|-------|------|--------|-------|---------|--------|-----|-----|----------------|----------------|----------------|----|------|-----------------------|-------|-----|----|----|-----|-------|----------------|
|      |       | EC   | IC     | SCC   | MFR CON |        |     | EQ  |                |                | IO TPD         |    |      |                       | WROF  |     |    |    |     |       |                |
|      |       | EC   | IC     | SCC   | DP      | DPS    | DFW | DGW | CĐ             | MCRE           | TSBPC          | GF | SPPF | 10                    | TP    | PDP | V  | EM | HRF | LIGHT | CW             |
| EC   | EC    |      |        | 1     | 1       | 1      |     | 1   | 11             | 1              | 1 <sup>3</sup> | 1  |      | 1                     | 1     | 1   |    | 1  | 1   |       | 1              |
| IC   | IC    |      |        |       | 1       | 1      |     | 1   |                | 1              |                | 1  |      | 1                     |       | 1   |    |    |     |       |                |
| scc  | SCC   |      |        |       | 1       | 1      | 1   | 1   | 14             | 1              |                |    |      | 1                     |       | 1   |    | 1  | 1   |       |                |
| MFR  | DP    |      |        |       |         | 1      | 1   | 1   | 1              | 1 <sup>2</sup> |                |    |      |                       | 17    | 17  | 17 |    |     |       |                |
| Σ    | DPS   |      |        |       |         |        |     |     | 1 <sup>5</sup> | 1 <sup>2</sup> |                |    |      | <b>1</b> <sup>6</sup> | 17    | 17  | 17 | 1  |     |       |                |
|      | DFW   |      |        |       |         |        |     |     |                |                | 1              |    |      | 1                     | 1     |     |    | 1  | 1   |       | 1              |
| CON  | DGW   |      |        |       |         |        |     |     | 1              | 1              |                |    |      |                       | 1     | 1   |    | 1  | 1   |       | 1 <sup>8</sup> |
| Ľ    | CD    |      |        |       |         |        |     |     |                | 1 <sup>2</sup> | 1              |    |      |                       |       |     |    | 1  | 1   |       |                |
|      | MCRE  |      |        |       |         |        |     |     |                |                | 1              | 1  | 1    | 1                     | 1     | 1   |    |    | 1   | 1     | 1              |
| EQ   | TSBPC |      |        |       |         |        |     |     |                |                |                |    |      | 1                     | 1     |     |    | 1  | 1   |       | 1              |
| В    | GF    |      |        |       |         |        |     |     |                |                |                |    |      | 1                     | 1     |     | 1  | 1  | 1   | 1     |                |
|      | SPPF  |      |        |       |         |        |     |     |                |                |                |    |      | 1                     |       |     |    |    |     |       |                |
| 0    | 10    |      |        |       |         |        |     |     |                |                |                |    |      |                       | 1     | 1   | 1  | 1  | 1   |       | 1              |
| 0    | TP    |      |        |       |         |        |     |     |                |                |                |    |      |                       |       | 1   |    | 1  | 1   |       |                |
| TPD  | PDP   |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    | 1  | 1   |       |                |
|      | V     |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    |    |     |       |                |
|      | EM    |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    |    | 1   | Ш     | 1              |
| WROF | HRF   |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    |    |     |       | 1              |
| ×    | LIGHT |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    |    |     |       |                |
|      | CW    |      |        |       |         |        |     |     |                |                |                |    |      |                       |       |     |    |    |     |       |                |

- Hard Spot conditions not well captured in the Interacting Threat Matrix.
- Three legs of the stool: hard spot, atomic hydrogen, stress






# **Modeled Consequence**

# Consequence

- Safety receptors (occupancy)
- Property estimates
- Pipe Repair
- Enforcement





# First Pass Injurious HS Rate Estimation

**Our Starting Point - Williams and Industry History** 

**Pipe Populations** 

**Certain Manufacturers** 

Particular batches of pipe / Purchase Orders

**Particular Vintages, OD/WT Combinations** 

Rates developed from failures and amount of pipe in inventory

Weighted toward Williams' history since understanding of the inventory not available for industry failures – limited accurate rate setting to those manufacturers we had experience with

| Pipe Seam<br>Type | Pipe<br>Manufacturer | Pipe<br>Productio<br>n Year | No. of<br>Incidents |
|-------------------|----------------------|-----------------------------|---------------------|
|                   |                      | 1951                        | 1 (0)               |
|                   |                      | 1952                        | 21 (17)             |
| Flash Weld        | A.O. Smith           | 1954                        | 2 (1)               |
|                   |                      | 1955                        | 1 (1)               |
|                   |                      | 1957                        | 1 (1)               |
|                   | Consolidated         | 1947                        | 1 (0)               |
|                   | Western              | 1957                        | 2 (2)               |
| DSAW              | Bethlehem            | 1955                        | 1 (1)               |
|                   | Kaiser               | 1949                        | 2 (2)               |
|                   | Republic             | 1957                        | 1 (1)               |
|                   |                      | 1947                        | 2 (1)               |
| ERW               | Youngstown           | 1950                        | 1 (1)               |
|                   | Tourigatown          | 1959                        | 1 (0)               |
|                   |                      | 1960                        | 1 (1)               |

| Failure_MP ~ | Failure_Da 1 | Main_( ~ | Diame ~ | Wt ~  | Grad ~ | Install_date ~ | Manufacturer ~       | Caus ~  | EST_FAIL_PRES ~ | PO ~              |
|--------------|--------------|----------|---------|-------|--------|----------------|----------------------|---------|-----------------|-------------------|
| 719.96       | 6/18/1961    | В        | 36      | 0.406 | x52    | 1957           | Bethlehem Steel      | HS      | N/A             | 90,000            |
|              |              |          |         |       |        | 2.75           |                      |         |                 |                   |
| 918.71       | 7/5/1967     | В        | 36      | 0.406 | x52    | 1957           | National Tube        | HS      | 720             | 90,001            |
| 663          | 4/3/1969     | Α        | 30      | 0.325 | x52    | 1949           | Consolidated Western | HS      | 790-795         |                   |
| 517.73       | 4/4/1969     | А        | 30      | 0.325 | x52    | 1949           | Consolidated Western | HS/SCC? | N/A             |                   |
| 1389.26      | 2/11/1970    | В        | 30      | 0.312 | x52    | 1958           | Bethlehem Steel      | HS      | 702             | 90,000            |
| 1562.46      | 6/9/1974     | В        | 30      | 0.312 | x52    | 1957           | Bethlehem Steel      | HS      | 718             | 90,000            |
| 628.94       | 10/3/1981    | В        | 36      | 0.406 | x52    | 1954           | Consolidated Western | HS      | N/A             | 75,101            |
| 626.02       | 7/17/1983    | С        | 36      | 0.469 | x52    | 1962           | Bethlehem Steel      | HS      | 1090            | 89782, WO 5222.04 |
| 577.74       | 4/10/2016    | С        | 36      | 0.406 | x52    | 1961           | National Tube        | HS      | N/A             | 84395             |
| 811.17       | 4/12/2022    | A        | 30      | 0.5   | x52    | 1959           | Bethlehem Steel      | HS      | 779             | 90,000            |
| 1558.66      | 3/8/2023     | В        | 30      | 0.312 | x52    | 1957           | Bethlehem Steel      | HS      |                 | 90,000            |



# 2024 Injurious HS Rate Estimation

# **Better Rate Setting**

- MAT 7-2A provided:
  - More comprehensive failure data
  - Large dataset of pipe populations
- ILI Finding incorporation
  - Evolving insights: 1,383 miles → 3,780 miles (2 years)
  - \*\*\*Beware "the law of small numbers"
  - Using our in-house ILI figures tied to specific populations

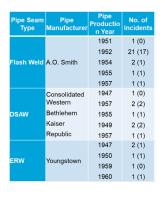





Table 18. Pipe mileage by manufacturer, 16-inch OD and Larger, 40% SMYS and Greater, Pre-1960 and 1960-1969

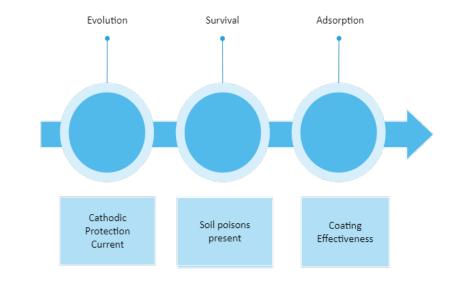
| Pipe Manufacturer    | Mileage | 5 PRCI Op | erators) | AL     | L Incident | s      | Incidents/Mile x1e-3 |         |        |  |
|----------------------|---------|-----------|----------|--------|------------|--------|----------------------|---------|--------|--|
| ripe Manufacturei    | < 1960  | 1960 -69  | < 1970   | < 1960 | 1960-69    | < 1970 | < 1960               | 1960-69 | < 1970 |  |
| AO Smith             | 16,404  | 5,029     | 21,434   | 58     | 0          | 58     | 3.536                | 0       | 2.706  |  |
| Bethlehem            | 884     | 2,620     | 3,504    | 7      | 0          | 7      | 7.915                | 0       | 1.998  |  |
| Claymont             | 35      | 0         | 35       | 0      | 0          | 0      | 0                    | 0       | 0      |  |
| Consolidated Western | 4,709   | 402       | 5,111    | 2      | 0          | 2      | 0.425                | 0       | 0.391  |  |
| Kaiser               | 2,399   | 3,593     | 5,991    | 2      | 2          | 4      | 0.834                | 0.557   | 0.668  |  |
| National Tube        | 8,620   | 2,874     | 11,494   | 2      | 1          | 3      | 0.232                | 0.348   | 0.261  |  |
| Republic             | 5,277   | 2,989     | 8,266    | 3      | 0          | 3      | 0.569                | 0       | 0.363  |  |
| US Steel             | 391     | 3,385     | 3,776    | 0      | 1          | 1      | 0.000                | 0.295   | 0.265  |  |
| Welland Tube         | 559     | 366       | 925      | 1      | 0          | 1      | 1.788                | 0       | 1.081  |  |
| Youngstown S&T       | 3,669   | 804       | 4,473    | 5      | 0          | 5      | 1.363                | 0       | 1.118  |  |
| Unknown, Other       | 2,332   | 1,401     | 3,733    | 3      | 1          | 4      | 1.287                | 0.714   | 1.072  |  |
| Aggregate            | 45,279  | 23,461    | 68,740   | 82     | 5          | 87     | 1.833                | 0.213   | 1.280  |  |

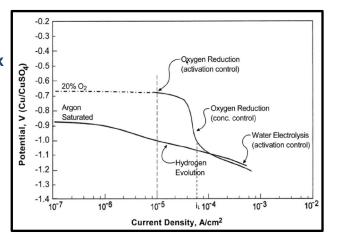
| Seven other incident | 3627  | 3321  | 7066  |
|----------------------|-------|-------|-------|
| operator mileage     | 3027  | 3321  | 7000  |
| Proportion of 5 PRCI | 0.080 | 0.142 | 0.103 |
| operator aggregate   | 0.080 | 0.142 | 0.103 |

Table 16. Reported ILI hard spot indications

| Manufacturer  | 2022      | ILI hard spot c | ount    | 2024 MAT-7-2 update |            |         |  |  |
|---------------|-----------|-----------------|---------|---------------------|------------|---------|--|--|
| Manufacturer  | ILI Miles | Hard Spots      | HS/Mile | ILI Miles           | Hard Spots | HS/Mile |  |  |
| A.O. Smith    | 739       | 282             | 0.382   | 1440                | 587        | 0.408   |  |  |
| Bethlehem     | 67        | 30              | 0.448   | 460                 | 550        | 1.196   |  |  |
| Claymont      | 33        | 5               | 0.152   | 68                  | 20         | 0.294   |  |  |
| ConWestern    | 46        | 10              | 0.217   | 306                 | 87         | 0.284   |  |  |
| Kaiser        | 96        | 27              | 0.281   | 229                 | 133        | 0.581   |  |  |
| Lonestar      |           |                 |         | 10                  | 4          | 0.400   |  |  |
| National Tube | 232       | 197             | 0.849   | 471                 | 228        | 0.484   |  |  |
| Republic      | 170       | 79              | 0.465   | 581                 | 90         | 0.155   |  |  |
| US Steel      |           |                 |         | 148                 | 46         | 0.311   |  |  |
| Youngstown    |           |                 |         | 57                  | 6          | 0.105   |  |  |
| Unknown       | -         |                 |         | 10                  | 78         | 7.800   |  |  |
| Aggregate     | 1,383     | 630             | 0.456   | 3,780               | 1829       | 0.484   |  |  |




## **Embrittlement Likelihood**


# Keying on CP Potentials

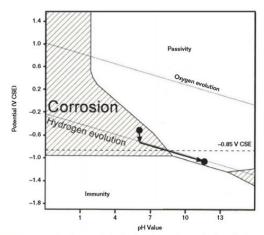
- Atomic Hydrogen needed for embrittlement
  - No great discriminator found for soil poisons
  - Coating quality -- future improvement to model
  - CP -- largest source of potential hydrogen generation

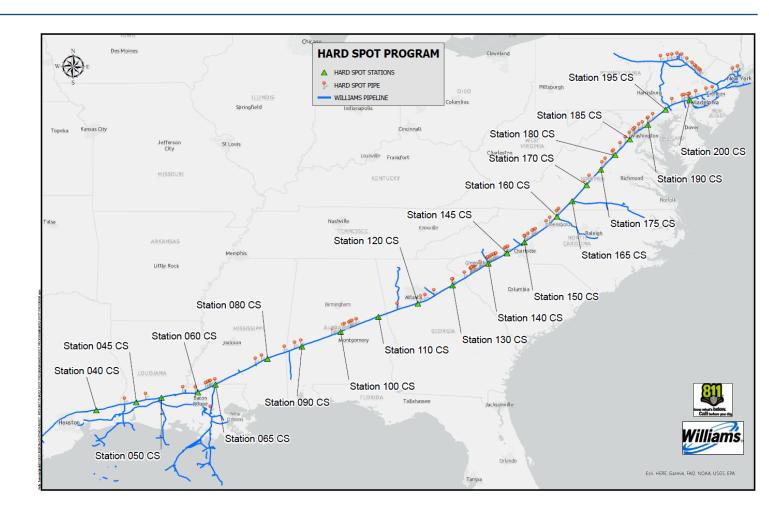
# Two Embrittlement Components

- Latest CP levels
  - On protected steel, 100 mV of additional polarization requires 10x current (second activation control region)
    - · Logarithmic multiplier for additional mV beyond -950mV CSE
    - Maxes out at -1350mV CSE with 10000x multiplier
- Recent CP level changes
  - Polarization increase between last read and 3 years previous
    - Maxes out at 200mV --- 100x multiplier
    - 100mV, 10x multiplier





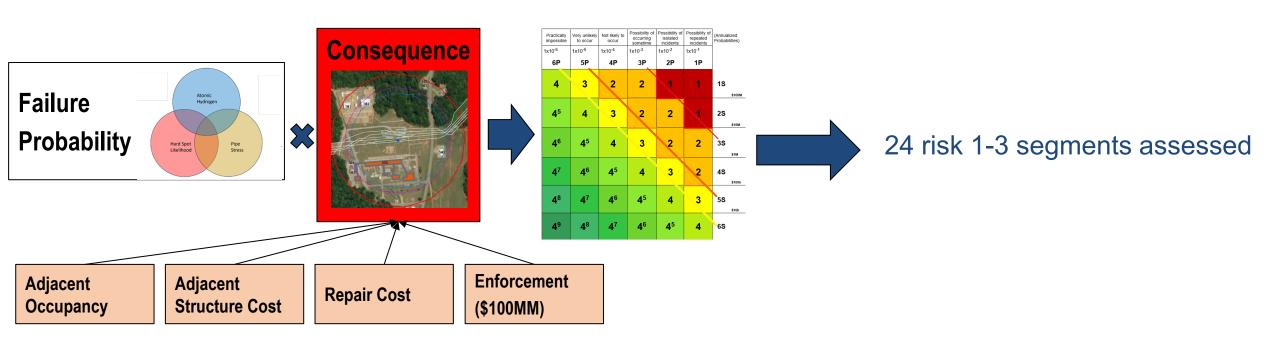




FIGURE 4 On a Pourbaix diagram, cathodically polarized potentials on steel are limited by the hydrogen line and increased CP current increases the steel/electrolyte interfacial pH.



# Mitigation driven by Risk Results

## HS ILI Assessments


- 51 Segments Assessed
  - At least 93 hard spots (Hardness ≥ 280 BHN)
- Additional ROW CP Survey
  - 104 segments
  - 258 miles total
- Additional Station CP Survey
  - 23 Stations Surveyed (test points, CIS)
    - CP reductions, CP coupon installation
- Station Piping Assessments
  - High risk pipe being excavated, assessed, recoated

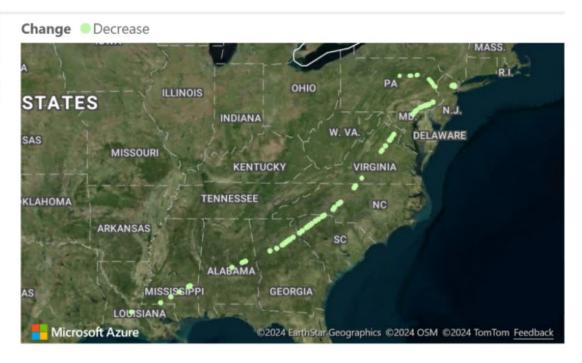




# Hard Spot ILI Risk Prioritization - Results

- 2023 Hard Spot Risk Model = 24 Risk 1-3 piggable segments identified (Williams risk exceedance)
  - Resulted in 114 digs issued and 24 digs completed to date (more to come in 2025)
    - 14 hard spot defects repaired




# Realized Risk Reduction from ILI Assessment

## HS ILI Assessments drove 90% probability reduction

### 2023 Risk Reduced through ILI Assessment

| 2023<br>Risk Cat | Line      | Segments | Miles |
|------------------|-----------|----------|-------|
| 2                | MAIN-B    | 7        | 2.79  |
| 2                | MAIN-C    | 1        | 0.14  |
| 2                | LEID-A-T  | 1        | 0.05  |
| 3                | MAIN-B    | 16       | 22.58 |
| 3                | LEID-A-T  | 2        | 6.79  |
| 3                | MAIN-C    | 5        | 5.28  |
| 3                | CFL-T-T-T | 1        | 0.66  |
| 3                | MLCWB     | 1        | 0.61  |
| Total            |           | 25       | 38.88 |

| 2024<br>Risk Cat | Line   | Segments | Miles |
|------------------|--------|----------|-------|
| 3                | MAIN-B | 3        | 0.35  |
| Total            |        | 3        | 0.35  |





# Hard Spot ILI 2025 +

- Using most recent Hard Spot Susceptibility knowledge + Williams hard spot findings to update Risk Model (annually)
  - Susceptibility is not binary so the challenge is drawing a line in the sand
- Consideration based on MAT 7-2A outcomes
  - What gaps are identified and how will that change our program
- Consideration for re-analysis if technology hasn't changed
- Consideration for re-assessments to improve POD/POI or technology changes
  - This could simply be trying out different vendors since not every ILI technology is the same

# **Questions**

