PRCI Strategic Research Priority (SRP)

Leak Detection SRP Breakout Sessions

Nikolaos (Nikos) Salmatanis
Leak Detection Engineer/Loss of Containment SME, Chevron

Fall TC Meeting
 October 2024

LEADING PIPELINE RESEARCH

LD-1-01

Leak Detection Feasibility Assessment

Project Status Update

Nikolaos (Nikos) Salmatanis

Leak Detection Engineer/Loss of Containment SME, Chevron

Dallas, TX October 15th, 2024

LD-1-01 - Scope

- LD-1-01: SRP LD: Internal and External Leak Detection Technology Test Facility Feasibility Assessment
- A feasibility study to develop a high-level estimate to build and maintain a facility for testing CPM and ILI (type) applications as well as external leak detection systems, that includes hardware, equipment, back-end software, identifying current capabilities, technology testing gaps, and practical options for a dedicated pipeline Leak Detection Test Site (TS) for real-world hydrocarbon leak simulations/testing.

Changes or Additions

LD – 01 Leak Detection Feasibility Assessment

Activities Underway/Complet	ted (since last report)	Overall Project Status/Significant Findings							
The interviews have all been	ompletion and is under review at Baker Risk a completed and have contributed to the draft report osted in the project folder, updates and tighter numbers would a specs	 85% completion Need Team review of draft report and cost analysis 							
Planned Activities (next perio	od)	Current Issues, Risks and Decisions Needed							
Send out the draft Final Rep	ort for comment and review to the project team	End of the year crunch							
	Rationale/Explanation of D	Deviations between Plan and Forecast							
Overall Schedule	The overall project is on schedule	No issues anticipated at this time							
Active Task(s)	Finishing up the drafted Final Report	Need help from PRCI Project Team on aligning the cost data							
Cost to Date	 No costs have been incurred for PRCI to date significant progress has been made 	No issues anticipated at this time							
Threats/Scope	A lot of times outside of Baker Risk's control								

LD-1-02

Liquid Pipeline Leak Event Primary Data Repository

Project Status Update

Leak Detection Engineer/Loss of Containment SME, Chevron

Dallas, TX October 15th, 2024

LD-1-02 Scope

- LD-1-02: SRP LD New Multi-Year Project: Liquid Pipeline Leak Event Primary Data Repository
- Phase 1: Identify the general requirements for a permanent repository for industry-supplied pipeline leak event data. The requirements would include defining the type of data to be included in the database, the frequency of updating the database with new data, how the data would be accessed (e.g. Admin/Operator/Supplier Views and Reports), and how long the data will be kept.

LD -1- 02 Liquid Pipeline Leak Event Primary Data Repository Critical

View	Activities Underway/Completed (since last report)Choose a ResearcherContract Executed via PRCI
/er	Planned Activities (next period)

Overall Project Status/Significant Findings

• 0% completion per Project Kick-Off

- See below (start the project)
- Validate PRCI Project Team

Current Issues, Risks and Decisions Needed

None at this time

Rationale/Explanation of Deviations between Plan and Forecast

	Overall Schedule		The overall project is on schedule, but started late	 Contract Kick-off on the 21st of October with UTSI
alus	Active Task(s)		 Contracting Kick-Off Meeting on the 21st Review of initial PRCI Project Documentation for team submittal 	• N/A
5	No costs have been incurred for PRCI to-date Cost to Date		No costs have been incurred for PRCI to-date	• N/A
			NI	

Threats/Scope **Changes or Additions**

None at this time

LD-1-03

SRP LD: Technical Best Practice for Computational Pipeline Monitoring on Liquid Pipelines

Project Status Update

LEADING PIPELINE RESEARCH

Principal Investigator, UTSI International

TC 2024 Fall Meeting 15 October 2024

LD-1-03 Technical Best Practice for Computational Pipeline Monitoring on Liquid Pipelines

Activities Underway/Completed (since last report)

- We continue to wait for results from operator surveys issued by API. We expect these within the next 30 days, based on current information.
- · We now have responses from most of the major CPM vendors servicing the industry, and once we can correlate these responses with those of operators we will initiate further contact as necessary with participating vendors.
- We completed and uploaded a brief summary of API 1130 and 1175 requirements as part of the project's Milestone 1 tasks. This was inadvertently overlooked earlier during the Phase 1 work.

Overall Project Status/Significant Findings

· We continue to be behind our intended schedule due to delays related to obtaining operator survey responses. The estimated schedule impact is now approximately 5 months.

Planned Activities (next period)

- Review operator survey responses and correlate them with the information provided by vendors.
- Begin, and hopefully complete interviews with a subset of operators (TBD), as well as follow up with vendors as needed.
- Issue intermediate project report on survey findings related to the information obtained.

Current Issues, Risks and Decisions Needed

- We continue to be impacted by the absence of operator survey responses.
- We have agreed on a revised approach to accelerate the remaining work in the project (Phases 3, 4 and 5), which will reduce the calendar time to complete by approximately 6 months, allowing for completion in December 2025, assuming survey responses are obtained in the coming weeks.

Rationale/Explanation of Deviations between Plan and Forecast

Overall Schedule	 We have agreed on a revised execution plan for the remaining project phases to allow completion by the end of 2025, but this is highly depending on receipt of operator survey results ASAP. 	 With the revised execution plan we have reduced the calendar time by 6 months, allowing completion by the end of 2025.
Active Task(s)	 Vendor survey responses have been received, except for two we are following up on. Operator surveys were published by API, and responses are expected in the next few weeks. 	 Hope to schedule operator and vendor interview session for the November/early December time frame.
Cost to Date	On target	No issues anticipated at this time

Threats/Scope **Changes or Additions** We do not expect any scope changes at this stage.

Technical Best Practice for Computational Pipeline Monitoring on Liquid Pipelines - Overview

Principal investigator: UTSI International Corporation

PRCI Project Team Leader: Ben Laurie

Total costs: \$283,200

- **Background:** The project will provide all operators with the technical guidance to confidently implement CPM on the significant number of pipelines without a continuous leak monitoring capability. This will increase industry-wide adaptation of CPM, improve the rapid detection of leaks, and reduce PHMSA-tracked industry leak consequences.
- Research Objectives/Project Deliverables: The proposed research will provide an operator with the necessary technical understanding to implement appropriate CPM leak detection technology to meet regulatory API-1130 requirements.

Latest Project Status Summary

Milestone	Task	M	S_Tas	Task Name	Took Dolivorahla	
-	l	1	1_1	Project kickoff and Liturature Review	Task Deliverable Kickoff meeting and Literature review bibliography	Complete
2	<u>)</u>	1	2_1	Supplier and Operator Surveys	Questionnaires and summary of information obtained	Underway
3	3	1		Best practice for the design, operational integration, maintenance, testing, and training	Summary Document	Not Started
3	3	2		Best practice for the design, operational integration, maintenance of instrumentation and measurement	Summary Document	Not Started
3	3	3	3_3	Approaches to determine the level of accuracy and repeatability for CPM inputs	Summary Document	Underway (Low Level)
3	3	4	3_4	Best practices for the design, operational integration and maintenance of telecom networks	Summary Document	Underway (Low Level)
3	3	5	3_5	Range of performance expectations, operational capabilities, validation methods, and limitations	Summary Document	Not Started
4	1	1	4_1	Final Report	Final Report following draft reviews and updates	Not Started
Ţ	5	1	5_1	Final Presentation	Final presentation to PRCI Members (approx 10% of total)	Not Started

Value to Members/Knowledge Transfer

- Target audience: Pipeline Operators, Leak Detection Program Managers, CPM Service Providers
- **Value:** The proposed research will provide an operator with the necessary technical understanding to implement appropriate CPM leak detection technology to meet regulatory API-1130 requirements.
- Knowledge transfer recommendations: A final report will be prepared that combines and formalizes the information and supporting documentation into an actionable handbook for selecting and implementing CPM systems.
- Questions/comments?

LD-1-04

Technical Understanding of Gas Leak Events and Placement of Leak Detection Sensors

Project Status Update

Zach Locks

Project Lead

Dallas, TX October 2024

Technical Understanding of Gas Leak Events and Placement of Leak Detection Sensors- Overview

- Principal investigator: TBD
- PRCI Project Team Leader: Zach Locks
- Total costs: \$88,500 (Approved). Likely need more based on proposals received
- Background: Part of Leak Detection SRP
- Research Objectives/Project Deliverables: Provide operators a methodology to understand gas leaks on pipelines by locating, detecting, and quantifying high probable leak areas based on historical data. The objective is to enable operators to prioritize sensor deployment, fixed and/or remote, strategically across assets.

LD-1-05

Assessment of Optical Technologies to Detect, Locate, and Quantify Methane Emissions

Project Status Update

LEADING PIPELINE RESEARCH

LD-1-05 Scope

- SRP LD: Assessment of Optical Technologies to Detect, Locate, and Quantify Methane Emission | PRCI
- The CPS has utilized optical technologies for methane emission detection for many years. This idea needs to be socialized/refined with CPS. I would suggest that this idea could be executed under CPS with more bandwidth than available under SOM (but not stuck on that as a requirement). There are other ideas proposed under CPS/GHG SRP that potentially overlap this idea. If a subgroup of the two TCs refine the objectives/scope/execution plan and still support this as a priority by 9/5/23, I would support proposing this to the RSC/EA for 2024 funding.

Changes or Additions

۲	.D-1-05 Status	5 Opuale		Status: Critical Needs Attention On Plan							
	Activities Underway/Comple	ted (since last report)	Overall Project Status/Significant Findings								
.view		been approved by team members been signed and contract has been returned	• N/A								
/er	Planned Activities (next perio	od)	Current Issues, I	Risks and Decisions Needed							
5	Schedule kickoff meeting	g with SwRI to proceed with project	Project timing is moving slower than anticipated due to communication to vendor and team								
		Rationale/Explanation of D	eviations between Plan and Forecast								
	Overall Schedule	It has taken additional time to get contract with resessigned and approved to begin the project	earch institute	Scheduling of kickoff meeting will assist with getting project back on schedule							
atus	Active Task(s)	Schedule kickoff meeting	No issues anticipated at this time								
STS	Cost to Date	 No costs to date Budget has been reviewed within context of 2024 a spending plans 	and 2025	No issues anticipated at this time							
	Threats/Scope	No issues anticipated at this time									

LD-1-06

SRP LD: Industry Technical Best Practice Using Inventory and CPM for Natural Gas Pipeline Leak Detection

Project Status Update

LEADING PIPELINE RESEARCH

Kaitlin McCauley

Leak Detection Engineer, Williams

Hyatt Regency, Dallas, TX 10/15/2024

LD-1-06 Scope

- SRP LD: Industry Technical Best Practice Using Inventory and CPM for Natural Gas Pipeline Leak Detection | PRCI
- The project will provide gas pipeline operators with quality technical guidance on the best technology practices for gas pipeline leak detection using internal leak detection methods. This will expand industry options for leak detection including guidance on using CPM as a possible continuous monitoring method for the rapid identification of large leaks and ruptures.

Threats/Scope

Changes or Additions

LD-1-06 CPM & Inventory for Gas Leak Detection

• Task 1 allotted 2.5 months

fdsf

Activities Underway/Comple		Overall Project Status/Significant Findings							
	k 1 (Out of 3) has been distributed to vendors reated and reviewed.	 15% completion with kickoff meeting conducted, provider survey distributed, and operator survey draft reviewed during team meeting. 							
Planned Activities (next peri Receive and compile o	•		isks and Decisions Needed						
Distribute survey to open	erators	Survey data n	as taken a while to receive.						
 Receive API survey da share survey data) 	ta possibly in October (Mark Piazza has agreed to								
	Rationale/Explanation of D	eviations between Plan and Forecast							
Overall Schedule	 7 month time frame in the proposal start Task 1 allotted 2.5 months, Task 2 allotted months and Task 3 allotted 2 months 		 Survey data taking time to receive 						
Active Task(s)	• 'Technology Needs' Task 1 (Out of 3)		No issues anticipated at this time						
Cost to Date	 No costs have been incurred for PRCI a Last update, SWRI stated they plan to ir \$24733 this quarter7 month time frame 	nvoice	No issues anticipated at this time						
	proposal started from 6/25								

LD-2-01

SRP LD New Multi-Year Project: Improve Leak Detection Technology Performance Through Retrofittable Sensors

Project Status Update

Program Manager, Southwest Research Institute

Fall 2024 TC Meetings 10/15/2024

LD-2-01 Improve Leak Detection Technology Performance Through Retrofittable Sensors

Status: Critical Needs Attention On Plan

Activities Underway/Completed (since last report)	
---	--

- May 2024 Contract with SwRI signed
- June 2024 Kickoff meeting
- Literature review completed

Overall Project Status/Significant Findings

On Track

Planned Activities (next period)

- Review LD-1-06 and API survey results when they become available.
- Develop and circulate surveys to the sensor manufacturers, members, and CPM vendors.

Current Issues, Risks and Decisions Needed

 Seeking approval to utilize results from LD-1-06 and API for vendor surveys.

Rationale/Explanation of Deviations between Plan and Forecast

Overall Schedule	e	 Project duration scheduled for nine months Schedule organized into five main tasks 	 Task1: Literature Review Task 2: Stakeholder Survey Task 3: Identification of Sensor Technologies Task 4: Draft Testing and Validation Protocol Task 5: Reporting
Active Task(s)		Compile surveys from the operators, CPM vendors and sensor manufactures.	Need member and vendor surveys generated and returned.
Cost to Date		 Invoiced \$19,000 of \$68,000 contracted (28%) Spend corresponds with planned progress 	On Track

- Threats/Scope **Changes or Additions**
- Receipt of sufficient/timely surveys
- Survey fatigue / multiple request for similar data by organizations/projects

LD-2-01 SRP LD New Multi-Year Project: Improve Leak Detection Technology Performance Through Retrofittable Sensors - Overview

- Principal investigator: Southwest Research Institute (Adam Hawley)
- PRCI Project Team Leader: Joseph Chamberlain
- Total costs: \$68,000
- **Background:** A key tool leveraged by the liquid pipeline community is the use of computational pipeline monitoring (CPM). One constraint of CPM systems is the availability of high-quality data from instrumentation along the pipeline. Increasing the amount, location, or accuracy of sensors on a pipeline could significantly increase the effectiveness of a CPM system; however, the cost to procure and install the sensors needs to be considered. As a result, the industry has a need for sensors that can be non-intrusively retrofitted to existing pipelines at an economical price point. These sensors need to be identified and evaluated so that industry can directly justify the cost of these additions.
- Research Objectives/Project Deliverables: The primary objective of this project is to identify feasible, retrofittable sensors and measurement methods for leak detection applications. The project will validate both intrusive and non-intrusive alternatives with respect to leak detection sensor and measurement requirements.

Tasks and Overall Status

- Task1: Literature Review Complete
- Task 2: Stakeholder Survey 75% Complete
- Task 3: Identification of Sensor Technologies
- Task 4: Draft Testing and Validation Protocol
- Task 5: Reporting

Active Task – Stakeholder Survey (Task 2)

Objectives

- Create and issue a survey to send to PRCI member companies and CPM vendors.
- Summarize the results of the survey for the PRCI project team.

Approach

- Generate two surveys
 - One for PRCI Member Companies
 - To identify: Sensors, measurement methods, system targets/tolerances, process conditions
 - One for CPM Vendors
 - To identify: Available sensors, tolerances

Deliverables

A short document providing a summary of the survey responses will be drafted

PRCI Project Team Input

- Recommendations on the content for the survey
- Responses to the survey

Next Task – Identification of Sensor Technologies (Task 3)

Objectives

• The objective of this task is to identify sensors that could improve CPM system performance.

Approach

- Based on the results from the literature review and survey, an assessment will be conducted with the goal to identify sensor technologies for CPM systems.
- Sensor developers will be contacted to determine currently available sensors, models, and the application range. A table will be generated to document various metrics, including:
 - Manufacturer, Model, Application metrics, installation requirements, cost and level of effort of install.

Deliverables

A table summarizing the metrics for the identified sensors.

PRCI Project Team Input

- Recommendations sensor types or vendors
- Feedback on table for comparison metrics

Value to Members/Knowledge Transfer

- Target audience: Operators, CPM Engineers, Leak Detection Specialist, measurement specialist, Facility Designers
- Value: This will enable the assessment of sensor availability and feasibility, ultimately providing operators with guidance to enhance their CPM systems.
- Knowledge transfer recommendations: Presentations at the SOM Technical Committee meetings, final report, a webinar summarizing the project findings
- Questions/comments?

NOTES section
overing your
r the edge of the
space and the
stus bar below
anges to a double
row. Click and
to reveal the
section if not
visible.

these "sticky notes" appropriate.

LEADING PIPELINE RESEARCH

Pipeline Research Council International

CPS-17-13 Scope

- SRP LD: Testing of Macro-scale Gas Pipeline Leak Detection Technologies | PRCI
- The deliverable would include a final report identifying the best leak detection technology for macro emissions monitoring that could be applied to large transmission pipelines or dense pipeline networks while addressing all comments and requests outlined in the work scope.

LEADING PIPELINE RESEARCH

Nikolaos (Nikos) Salmatanis

Leak Detection Engineer/Loss of Containment SME, Chevron

Dallas, TX October 15th, 2024

LD SRP Roadmap Overview

Project	14	T:41-	Total funding		20	23			202	4		2025 21 Q2 Q3 Q4			20	26		2027				2028				2029															
Number	Idea	Title	(+18%)	Q1	Q2	Q3	Q4	Q1	Q2 C	3 Q4	Q1			Q1	Q2	Q3	Q4	Q1	Q2 (Q3 (Q4 Q	L Q2	Q3	Q4	Q1	Q2 (Q3 Q4														
		Internal and External Leak Detection Technology Test							ОМ																																
LD-1-01		Facility Feasibility Assessment	88,500					3	MOM																																
LD-1-02	3399	Liquid Pipeline Leak Event Primary Data Repository	236,000									SOM	1										\perp																		
		Technical Best Practice for Computational Pipeline									SOI	м																													
LD-1-03	3334	Monitoring on Liquid Pipelines	283,200								301	'		_									\perp																		
		Technical Understanding of Gas Leak Events and									S	ОМ																													
LD-1-04	3392	Placement of Leak Detection Sensors	88,500									01-1											\perp																		
		Improve Leak Detection Technology Performance								ME	AS																														
LD-2-01	3147	Through Retrofittable Sensors	200,600								.,,,,												\perp					\bot													
		Assessment of Optical Technologies to Detect,										С	PS																												
LD-1-05	3461	Locate, and Quantify Methane Emission	344,700					_													_		_	\perp			\dashv	\perp													
		Industry Technical Best Practice Using Inventory and										SC	МС																												
LD-1-06	3335	CPM for Natural Gas Pipeline Leak Detection	147,500					_								_					_		_	_			_	\perp													
		Testing of Macro-scale Gas Pipeline Leak Detection										SOM					SOM																								
CPS-17-13		Technologies	177,000					_					_						_	_	_		_	_			\rightarrow	\perp													
	3393	Characteristics of Gas Leak Signatures	472,000					_						С	PS	S											\rightarrow	\perp													
		Leak Detection Sensor-Based Technology Test										SC	МС		SOM																										
	3400	Facility Design	483,800					_	_														+	-			_	+													
		Pipeline Segment Internal Leak Detection Technology										SOM					SOM				SOM				SOM				SOM												
		Test Facility Design	531,000					_		+			214										+	_	_		\dashv	-													
		Leak Rate Estimation from Pipeline Defects	200,600					-		_		SC	MC	_		-			_	_	_																				
	ı	Pipeline Digital Twin for Leak Detection Simulation	054.000																						SC	M															
	3310	and Machine Learning Applications	354,000					_	_	+													_	_	_																
	2204	Repository for Validated Gas Leaks by Geographical	205.000																						SOM																
	3394	Regions and Terrain Type Technology Direct Comparison for Gas Detection and	295,000					\dashv		+					_		1			$\overline{}$		_			Ш	_	_														
	220F	Quantification using Aerial Platforms	472,000																					SC	M																
	3393	Technical Best Practice for External Leak Detection	4/2,000			\vdash	\vdash	\dashv	+	_			_			\vdash		-	\dashv	\dashv	+		_				_	$\overline{}$													
	3336	Systems on Liquid Hydrocarbon Pipelines	88,500								S		MC																												
Future			SRP Spend		.3	20,0	000	\$	73	2,410	\$	9	358	,560	\$	<u></u>	00,0	00	\$	41	0,00	0 \$		300	000	\$	40	00,000													
Active		SRP Spe	_		77.6	_	\$		4,244	_										3.80				000	\$		72,000														
		3111 34		_				т.		unding	_		_	RP Fun	-	П	–			unding		- 7	PS SR	- '		_		_,==													
-														-							-			-																	

SRP Plan Schedule and Funding for 2025

Idea	Title	Year	Comment	Y2024	Y2025	Y2026	Y2027	Status	Notes
<u>3393</u>	Characteristics of Gas Leak Signatures (LD SRP G2.2)	2025	. A workshop on the topic may be beneficial. A workshop for SRP project scoping is being planned.		200	200		Deferred	Moved from 2024 to 2025
3400	Leak Detection Sensor- Based Technology Test Facility Design (LD SRP 3.3)	2025	LD-1-01 needs to be completed before this idea can proceed. LD-1-01 to be completed Q4 2024		50	200	160	Deferred	Moved from 2024 to 2025
<u>340</u>	Pipeline Segment Internal Leak Detection Technology Test Facility Design (LD SRP L3.1)	2025	LD-1-01 needs to be completed before this idea can proceed. LD-1-01 to be completed Q4 2024		50	200	200	Deferred	Moved from 2024 to 2025
<u>3418</u>	Leak Rate Estimation from Pipeline Defects	2025	I do not believe that additional flow testing is needed under this project, even for fluids undergoing phase transformations. I believe that there is sufficient background data and models such that a tool can be developed directly. I believe that PRCI should specify the architecture of the software tool (e.g., a widget on PRCI's website/VTDC with a SaaS API for paid non-member usage) and that that work should be bid.		220			Recommend offramp	Data from EC-2-10 is available
3394	Repository for Validated Gas Leaks by Geographical Regions and Terrain Type (LD SRP G2.3)	2025	Dependent on the completion of 3393.		200	50			

Idea 3393 – Characteristic of Gas Leak Signatures

Activities Underway/Completed (since last report)

 The proposed research will review available gas leak events by composition of detected elements by concentration levels relative frequency of detection. Detection of elements should include but not limited to: CH4, Other/Total Hydrocarbons, and CO2. The database should store recorded signatures by probability (High, Medium, Low) vs. Consequence (High, Medium, Low) relative to leak detection methods deployed.

Overall Project Status/Significant Findings

N/A

Planned Activities (next period)

- Needs a Team Lead
- Need to take the idea and put together an RFP
- Need to list Researchers to send RFP out

- Current Issues, Risks and Decisions Needed
 Appears to be a pipeline specific project, based on PHMSA data, most of the methane emissions occur at facilities.
- If the idea is completed as proposed, how is the database to be used to reduce emissions?
- A workshop on the topic may be beneficial.

Rationale/Explanation of Deviations between Plan and Forecast

Overall Schedule		Mid-Year 2024, conforming	 No issues anticipated at this time
Active Task(s)		 Communicate at PRCI Summer TC need for Team Lead, and other Planned Activities 	 PRCI assisting with getting Team Leads
No costs have been incurred for PRCI 2025: \$236K 2026: \$236K		• 2025: \$236K	No issues anticipated at this time

Threats/Scope **Changes or Additions**

- See Planned Activities
- LD SRP project put in CPS: Greenhouse Emissions Reduction and Measurement

Activities Underway/Completed (since last report)

Threats/Scope

Changes or Additions

Idea 3400 – Leak Detection Sensor-Based Technology Test Facility Design Status: Critical Needs Attention On Plan

Overall Project Status/Significant Findings

 Phase 1: Define and specify the requirements and industry options for dedicated test sites (TS) for comprehensive external pipeline LD technology testing. Phase 2: Design any identified facilities to address testing gaps. 	N/A		
Planned Activities (next period)	Current Issues, Risks and Decisions Needed		
 Need to take the idea and put together an RFP Need to list Researchers to send RFP out 	 LD SRP project LD-1-1 needs to be completed 1st. Possible location options may include PRCI (TDC), GTI/university/other institutes, Baker Risk, and/or operator-provided sites. 		

Rationale/Explanation of Deviations between Plan and Forecast Mid-Year 2024, conforming LD SRP project LD-1-1 **Overall Schedule** needs to be completed 1st. Communicate at PRCI Summer TC need for Nikolaos Salmatanis to be Active Task(s) other Planned Activities Team Lead · No costs have been incurred for PRCI No issues anticipated at • 2025: \$59K **Cost to Date** this time 2026: \$236K 2027: \$189K See Planned Activities

Design

Idea 3401 – Pipeline Segment Internal Leak Detection Technology Test Facility

Activities Underway/Completed (since last report)

- Phase 1: Define and specify the requirements and industry options for a dedicated pipeline segment internal leak detection (e.g., CPM: RTTM/Acoustic, ILI: Smart pigs) test facility.
- Phase 2: Address the gaps from Phase 1. Provide a comprehensive design and implementation path (i.e. blueprint) for a dedicated pipeline internal leak detection test facility.

Overall Project Status/Significant Findings

N/A

Planned Activities (next period)

- Needs a Team Lead
- · Need to take the idea and put together an RFP
- Need to list Researchers to send RFP out

Current Issues, Risks and Decisions Needed

- LD SRP project LD-1-1 needs to be completed 1st.
- Possible location options may include PRCI (TDC), GTI/university/other institutes, Baker Risk, and/or operator-provided sites.

Rationale/Explanation of Deviations between Plan and Forecast

Overall Schedule	Mid-Year 2024, conforming	 LD SRP project LD-1-1 needs to be completed 1st.
Active Task(s)	Communicate at PRCI Summer TC need for other Planned Activities	 PRCI assisting with getting Team Leads
Cost to Date	 No costs have been incurred for PRCI 2025: \$59K 2026: \$236K 2027: \$236K 	No issues anticipated at this time
	-	

Threats/Scope **Changes or Additions**

- See Planned Activities
- Can be done in tandem with 3400, could use a joint Team Lead for 3400/3401

Idea 3418 – Leak Rate Estimation from Pipeline Defects

Activities Underway/Completed (since last report)

The objective of this research is to develop data and leak rate estimation guidance for gas
pipeline leak rates. This work will employ data and modelling tools developed in US DOT,
PHMSA supported research "Improve Liquid Pipeline Leak Rate Estimation" (Agreement
No.: 693JK32010009POTA). This work will differ from the previous work on leak rates for
liquids because of the differences in behaviors of gases and liquids.

Overall Project Status/Significant Findings

N/A

Planned Activities (next period)

- Needs a Team Lead
- Need to take the idea and put together an RFP
- Need to list Researchers to send RFP out

Current Issues, Risks and Decisions Needed

- Equipment and flanged connection or soft good (e.g. gaskets and seals) related leak rate testing not included in this project idea.
- NGL's or other liquids that involve phase transformation as part of the release process.
- · A workshop on the topic may be beneficial.

Rationale/Explanation of Deviations between Plan and Forecast

	Overall Schedule	 Mid-Year 2024, conforming 	Shovel reading project.
200	Active Task(s)	 Communicate at PRCI Summer TC need for Team Lead, and other Planned Activities 	 PRCI assisting with getting Team Leads
	Cost to Date	No costs have been incurred for PRCI2025: \$260K	No issues anticipated at this time

- Threats/Scope
 Changes or Additions
- See Planned Activities
- Data from EC-2-10 is available

Idea 3394 – Repository for Validated Gas Leaks by Geographical Regions and

Activities Underway/Completed (since last report)

The proposed research will review available gas leak events by geographical region and terrain types including but not limited to: unusual vegetation, frozen dome, above ground pertinence, depth of cover, location of detection compared to leak origin.

Overall Project Status/Significant Findings

Dependent on the completion of 3393

Planned Activities (next period)

Needs a Team Lead

Terrain Type

- Need to take the idea and put together an RFP
- Need to list Researchers to send RFP out

Current Issues, Risks and Decisions Needed

A workshop on the topic may be beneficial.

Rationale/Explanation of Deviations between Plan and Forecast

Overall Schedule	Deferred to 2026	• N/A
Active Task(s)	 Communicate at PRCI Summer TC need for other Planned Activities 	 PRCI assisting with getting Team Leads
Cost to Date	No costs have been incurred for PRCI2026: \$2369K2027: \$59K	No issues anticipated at this time
	_	

Threats/Scope **Changes or Additions**

- See Planned Activities
- Missed on the original slate of LD SRP projects

Idea #3336 Technical Best Practice for External Leak Detection Systems on Liquid Hydrocarbon Pipelines

Link in PRIME: https://www.prci.org/prime/idea/3336

• Status: Project was originally taken out of the SRP roadmap due to pre-project completion. LD Advisory team and specifically API/LEPA are interested in helping get that project underway as soon as possible

Proposed outcome: The proposed research will provide an operator with the necessary technical guidance for confident selection of the correct ELDS technology for targeted facilities leak monitoring sites. Identify the ELD technical and operational requirements, and issues for ELD implementation and assessment. This would provide guidance on how to implement the technologies for installation commissioning and operationally based on research.

Proposed Scope:

- 1. Identify currently available ELDS technologies for liquids pipelines as listed by API-1175 and other sources.
- 2. Formally assess the Technical Readiness Level (TRL) of each identified ELDS technology using the PRCI TRL scale. Select those technologies that are assessed with a sufficient TRL for operational deployment for liquids pipelines.
- 3. Complete a detailed technical summary of the selected ELDS technologies.
- 4. Complete an anonymized survey of operational ELDS installations in the liquids pipeline industry. Identify the key successes and challenges identified by the operators.
- 5. Use the project results to develop a suggested ELDS Technology Selection Process to provide decision-making guidance to operators.
- Timeline & Budget Request: **12 month (or less) for \$75k**
- Current placement on SOM TC roadmap is 2029

Idea 3336 - Technical Best Practice for External Leak Detection Systems on **Liquid Hydrocarbon Pipelines**

Activities Underway/Completed (since last report)

• The project will provide liquid operators with industry-recognized technical guidance to select appropriate ELDS for targeted leak detection. This will increase industry-wide adaptation of ELDS to improve the rapid detection of facilities leaks that are not detectable by CPM.

Overall Project Status/Significant Findings

N/A

Planned Activities (next period)

- Per RSC/EA, going to use SRP surplus from 2024 to fund for 2025
- Need to list Researchers to send RFP out

Current Issues, Risks and Decisions Needed

- Industry Strategic Project with API and LEPA Support.
- A workshop on the topic may be beneficial at PIX 2024.

Rationale/Explanation of Deviations between Plan and Forecast

	Overall Schedule	Mid-Year 2024, conforming	 Shovel reading project; RFP drafted.
arus	Active Task(s)	 Communicate at PRCI Summer TC need for other Planned Activities 	Nikolaos Salmatanis to be Team Lead
ָס (Cost to Date	No costs have been incurred for PRCI2025: \$89K	No issues anticipated at this time

- Threats/Scope **Changes or Additions**
- See Planned Activities
- Missed on the original slate of LD SRP projects

Where we are going: Strategic Research Priority

- Idea #3336 consideration for including of the project in 2025 or 2026
- Multi-million-dollar, five-year plan to quantumly accelerate pipeline related research to meaningfully advance the leak detection technology solutions space for liquid and gas pipelines
- Currently a multi technical committee effort
 - Compressor and Pump Station, and GHG
 - Measurement

Other Items:

- RFPs have not received a lot of proposal return (sent to 5+ contractors with 1 or 2 proposals returned)
- Many of the projects were sent out to the same leak detection contractors
- Looking for more volunteers to participate on RFP development and team leadership

SRP Plan Schedule and Funding for 2026 and Beyond

Idea	Title	Year	Comment	1st Year	2nd Year	Notes
<u>331</u> (Pipeline Digital Twin for Leak Detection Simulation and Machine Learning Applications - (LD SRP 3.2)		I like the concept of using advanced analytics to improve leak detection. I'm not sure that this is exactly the idea. I think that all existing transient based (pipeline modeled) CPM systems are already functionally digital twins. Where I think there would be a better AI/Expert System approach is in alarm analysis to reduce false positive/false negative. For example, if the rate of change of discharge pressure does not meet certain minimums when a pump is turned (based on the current pipeline pressure, fluid properties, and pipe size) there is a higher likelihood of a pipeline leak/failure. But a high rate of pressure decrease occurs on the suction side of a pump when a pump turns on and that rate of change decreases with time, it is a normal transient. This is where I think that AI could be very valuable in developing empirical and rule-based logic that operators and leak detection vendors could apply to make CPM systems more reliable. I would recommend moving this forward to 2025 if this is fleshed out more with a specific focus on how the results of the research would be efficiently implemented by pipeline operators. A workshop on the topic may be in order.	200	100	Additional refinement needed
<u>339</u>	Technology Direct Comparison for Gas Detection and Quantification using Aerial Platforms (LD SRP G2.4)		Dependent of the completion of 3398.	100	300	